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Abstract. The one-dimensional Thue-Morse sequence with a generating matrix of deter- 
minant 0 has been suggested to be intermediate between a periodic structure and a standard 
quasi-periodic structure like the Fibonacci sequence. The renormalisation procedure devel- 
oped in our previous study of the one-dimensional Fibonacci quasi-crystal is applied here to 
discuss the electronic spectrum of a tight-binding Thue-Morse aperiodicchain. The resulting 
integrated electronic density of states indeed shows a structure that is more like that of a 
periodic chain than a Fibonacci quasi-crystal. We suggest that the analytical procedure can 
be extended to study one-dimensional quasi-crystals of any other kind, the two-dimensional 
Penrose lattice as well as three-dimensional real quasi-crystals. 

1. A tight-binding model of one-dimensional Thue-Morse aperiodic chain 

There now exist in the literature a considerable number of theoretical works dealing 
with the Fibonacci quasi-crystal. But very little attention has been paid to other one- 
dimensional aperiodic structures. Axel et al(1986), Allouche et a1 (1986) and Riklund 
et a1 (1987) called attention to the Thue-Morse sequence: 

LssLsLLssLLsLssL * . . 

which has a generating matrix of determinant 0 (Riklund et a1 1987) 

In comparison, the periodic chain 

LsLsLsLsLsLsLsLs..  . 
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has a generating matrix 

with a null determinant, too, whereas the Fibonacci chain 

LSLLSLSLLSLLS . . . 
is generated by 

whose determinant is equal to 1. It is claimed (Riklund et a1 1987), therefore, that the 
Thue-Morse structure constitutes a link between a periodic and a Fibonacci chain. 
Riklund et al (1987) solved eigenvalue problems for a number of finite tight-binding 
Thue-Morse chains to illustrate such a speculation. More recently, Cheng et a l ( l 9 8 8 )  
published detailed studies of electronic properties of finite Thue-Morse chains in the 
tight-binding approximation and associated arguments concerning the behaviour of the 
electronic spectrum in the infinite case. 

Niu and Nori (1986) and Ma and Tsai (1988) formulated a renormalisation procedure 
for the study of the electronic structure of tight-binding Fibonacci quasi-crystals. Com- 
bined with the self-similarity in the structure of the Fibonacci sequence, it gives all details 
in the integrated density of states versus energy behaviour (Ma and Tsai 1988) in 
complete agreement with a numerical simulation (Ma et a1 1986). The theory has 
proved to be useful in the study of quasi-periodic systems (see, for instance, Garg 1988, 
Appendix B). Here, we apply the same procedure to study the electronic structure of a 
tight-binding Thue-Morse chain. The results are again satisfactory. 

We need, first of all, to formulate more precisely a model for a one-dimensional 
tight-binding aperiodic chain. The Thue-Morse sequence can also be generated by a 
very simple rule. Starting with LS, successive substitutions 

L +  LS s-+ SL (1) 

give us immediately generations of various order of the sequence: 

LS 

LSSL 

LSSLSLLS 

LS s LS LLS s LLSLSS L 

. . .  
Consider now a chain of atoms connected by long (L) and short (S) bonds between 
nearest neighbours arranged according to the Thue-Morse sequence shown in figure 1. 

- 2: 2 = o z  i :: - ;i f =:  -2 - 3 0 4  Z f  I C O :  : +... 
L S S L S L  L S S L  L S L S S L S L  L S L S S L  L S S L S L  L S S L  L 

Figure 1. A Thue-Morse aperiodic chain consistingof atoms connected by long (L) and short 
(S) bonds. 
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Weconsiderthe long and short bonds to have unequal strengths, TLand T,. Furthermore, 
each of the atoms must be in any one of three different nearest-neighbour surroundings: 
(M) connected to other atoms on both sides by long bonds, (D) connected to other atoms 
on one side by a long bond and on the other side by a short bond and (T) connected to 
atonls on both sides by short bonds. We consider, in general, atoms in these three 
different cases to have different single atomic levels e M ,  eD and e,. Our model is then 
formulated by the following Hamiltonian: 

where i and j label the atomic sites along the chain and 

when atom i is on an (M) site 

when atom i is on a (D) site 

when atom i is on a (T)  site 

eLq 

e,  = e ,  

e ,  

[ T ,  when j = i ? 1 and the bond between i and j is a long one 
i (4) 

TI,  =I T, when j = i 5 1 and the bond between i and j is a short one ( 5 )  
I 

(0 in any other case. 

For simplicity, we discuss in this paper the case of equal atomic levels, and refer all 
energies to this level, so that eM = e,, = eT = 0.  The stationary Schrodinger equation 
with Hamiltonian (3) is then 

T t - l , l  Ii - 1) + TI / i  + 1) = Eli) (6) 
E being the electronic energy eigenvalue. 

Besides the renormalisation study, which is going to be described in the following 
sections, we evaluate the integrated electronic density of states (DOS) D(E)  also by 
means of the negative eigenvalue method (Dean 1972, Ma et a1 1986) for a finite chain 
consisting of 15000 atoms described by the same Hamiltonian (3). The results of 
numerical simulation will be used to check the accuracy of renormalisation calculations. 

Before concluding this section, we note a few simple facts in the structure of a Thue- 
Morse chain shown in figure 1, which will be useful later. If we switch off the long 
bonds (setting TL = 0) in figure 1, the whole chain breaks into a sequence of isolated 
monatomic, diatomic and triatomic molecules. Let NM, ND and NT be the corresponding 
numbers of these molecules in a chain of total number of atoms N. Then obviously, 

NM + 2 N D  + 3NT = N 

N, + 2NT = N s  

s -  L - z N  

(7) 

(8) 

(9) N - N  - L  

where NL and Ns are the number of long and short bonds, respectively. Equations (7)- 
(9) imply NM = N,. Moreover, closer examination of the generation rule tells us N M  = 
N,. Hence 

= ND = N ,  = QN.  (10) 
By switching off the long bonds ( TL = 0), there are only five energy eigenvalues 

arising from the monatomic, diatomic and triatomic molecules, respectively, E = 
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Table 1. Energy levels in the zeroth approximation, T,  = 0 

Levels 
(in units Ts) oosp(E) Integrated D O S D ( E )  = J E l p ( E ’ )  d E ’  

I 

1 1 
6 I 

2 I 

- 2  6 it 
-1  

+1 t 8 

+2 1; 1 

0 4 
I 

Figure 2. The integrated DOS D ( E )  versus energy 
E curve in the zeroth approximation with T L  = 0. 

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 

Energy, E (in units of 7,) 

--G, -1, 0 (doubly degenerate), 1 and d? (in units of Ts). In view of(lO), we list in 
table 1 the levels as well as the corresponding DOS p ( E )  and integrated DOS D ( E )  = 
JFmp(E’)  d E’ providing the basis from which we shall begin our renormalisation cal- 
culation in the case TL f 0 but 1 TL/Ts l -@ l. The integrated DOS D ( E )  is also illustrated 
in figure 2, where we can see the principal step structure in the D ( E )  versus E curve. 
More detailed fine structures are going to be explored in the following two sections. 
Section 2 discusses first the level E = 0 whereas § 3 deals with the other four levels. Some 
discussions are given in 0 4. 

2. Renormalisation analysis of electronic structure: level E = 0 

Switching on a small TL, such that 1 TL/Ts 1 1, introduces two main effects on the levels 
listed in table 1, namely level split and level shift. We begin now to analyse these effects 
on each of the levels in table 1 separately, by means of a renormalisation procedure. 

In the zeroth approximation ( TL = 0) E = 0 has a higher (N/3-fold) degeneracy than 
any other level in table 1 and/or figure 2. We would like to tackle this level first. In the 
zeroth approximation, it originates from the energy eigenvalue of either monatomic or 
triatomic molecules. With switching on of TL, each molecule is coupled to its nearest 
neighbouring molecules at a strength TL. We need to calculate the effective coupling 
strength between two nearest-neighbour molecules in eigenstates belonging to the same 
level E = 0. There are, thus, two possible cases, as one can see from figure 1. In the first 
case a monatomic molecule is coupled directly through a long bond TL to a triatomic 
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,. .. ( a  1 ... < - c 0-- ... 
n-1 n n+l  n+2 n+3 n+L 

- . . -  C A I  ( a )  - - -  . . - -  0- ... 
n - 1  n ncl n+2 n+3 n+4 n c 5  n+6 

Figure 3. (a )  A monatomic molecule ( n )  coupled to a triatomic molecule (n + 1, n + 2 ,  
n + 3) through a direct long bond. ( b )  A monatomic molecule ( n )  coupled to a triatomic 
molecule ( n  + 3, n + 4, n + 5 )  indirectly through two long bonds and a diatomic molecule 
( n  + 1, n + 2 ) .  

molecule (figure 3(a) )  while in the second case it is coupled indirectly through two long 
bonds T ,  and a diatomic molecule (figure 3(b)).  These are the only two possible 
configurations since monatomic and triatomic molecules always occur alternately along 
the chain in figure 1. 

Consider the case of figure 3(a) first. We write relevant Schrodinger equations as 

T ,  In - 1) + TL In + 1) = Eln)  

TL In) + T ,  In + 2 )  = E In + 1) 

T s  In + 1) + T ,  In + 3)  = Eln  + 2) .  

corresponding respectively to the energy eigenvalues fi, 0 and - fi. Expressing 
1 n + l), 1 n + 2) and I n + 3) in terms of I k f i )  and IO), and substituting into the last two 
equations of (11) with In + 2) eliminated, we have by combining the result with the first 
equation of (1 1) 

which can be simplified in view of E = 0,l TL/T,I < 1 ,  into 

~ , l n  - 1) + ( f i / 2 ) ~ , 1 0 )  = Eln). (14) 

Therefore, the effective coupling strength between a monatomic molecule and a tri- 
atomic molecule in the 10) state is, in this case, 

T i  = ( a / 2 ) T L .  ( 1 5 )  

In the case of figure 3(b) ,  rearrangement of the Schrodinger equations 
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Table 2. First-order splitting of level E = 0 in table 1 with TL = O.lTs, 

Levels (in units T,) Integrated DOS D ( E )  

Numerical 
Calculated simulation Calculated 

Numerical 
simulation 

-‘d2T4 = -TL = -0.1 -0.1000 4 X + 4‘’ = = 0,4167 0.4167 
0 0.0000 + x $ +  TZ .: - - is 7 - - 0.5833 0.5833 
v2T4  = T,  = 0.1 0.1000 4 X f + = 5 = 0.6667 0.6667 

This is the value of D ( E )  in the second line in table 1. 

n - 1) + TLln  + 1) = Eln)  

n)  + T s / n  + 2)  = Eln  + 1) 

n + 1) + T L  In + 3 )  = E / n  + 2 )  

T,ln + 2 )  + T s / n  + 4) = E ( n  + 3 

T s  In + 3 )  + T ,  In + 5 )  = Eln  + 4) 
in a like manner yields 

so that the effective coupling strength is, in the second case, 

Regarding the monatomic and triatomic molecules as ‘equivalent atoms’ coupled 
via Tk and/or T i ,  we obtain the following transformed sequence: 

L’s’s‘L‘L’L’s’s’L’s’s’L’s‘s’L’L‘L’s‘s’L‘L’L’s’s’ . . . (19) 

implying a transformed atomic chain shown in figure 4. If we switch off all bonds L’, we 
obtain a collection of ‘monatomic‘ and ‘triatomic molecules’ in equal numbers 
N L  = N ;  = + N ’ ,  N’  being the total number of ‘equivalent atoms’. We thus obtain split 
levels and first-order steps in the D ( E )  versus E curve summarised in table 2 .  Along with 
the results of renormalisation calculations we have also listed in table 2 results of 
numerical simulation with 15 000 atoms. The agreement is entirely satisfactory. The 

0 $ 2  c 3 c o.-o-€----au--o-... 

Figure 4. The equivalent atomic chain in accordance with the renormalisation transformed 
sequence (19). 
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2 0.4 I rl 
Figure 5. The D ( E )  versus E curve in the neigh- 
bourhood of E = 0 in the first approximation 
showing fine structure in comparison with figure 

0 
-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 

2 ( T , / T S  = 0.1). 

!L 
Energy, E ( in units of T, )  

n’ n’+1 - - . , , --0--+---4--. . 
n-1 n n+l ,742 nt3 n.4 n+5 

Figure 6. Two triatomic molecules n’ = ( n ,  n + 1, n + 2) and n‘ + 1 = ( n  + 3, n + 4,  n + 5 )  
coupled directly via a long bond. 

first-order steps are shown in the central part of figure 5, too. We shall see later that the 
zeroth-order levels E = * Ts and k f i T s  do not split at the order 1 TL/Ts I .  

We can pursue the renormalisation calculation further to the second approximation. 
When Ti is switched on in figure 4, there are three different ways of coupling between 
‘molecules’ with energy eigenvalue E = 0, namely coupling via a long bond (i) between 
‘monatomic molecules’ as two nearest neighbours, (ii) between a ‘monatomic molecule’ 
and a ‘triatomic molecule’ as nearest neighbours and (iii) between two ‘triatomic mol- 
ecules’. In the third case, for example, we obtain from Schrodinger’s equations for the 
transformed chain (figure 6) 

TI In - 1) + T i  In + 1) = Eln)  

T i  In) + T& In + 2 )  = Eln  + 1) 

T i  In + 1) + T i  In + 3) = E / n  + 2 )  

TI  In + 2)  + T i  In + 4) = E / n  + 3 )  

T & / n  + 3)  + Ts/n + 5 )  = E ) / n  + 4) 
the reduced relation 

( V 5 / 2 ) T I  - 1) - $ T i  10, n’ + 1) = E/O,  n’)  (21) 

where 10, n’) denotes the E = 0 eigenstate of the n’th ‘triatomic molecule’. So the 
effective coupling strength is, in this case, --;Ti. It can be visualised that the effective 
coupling strengths in the first and second cases are, respectively, TI and ( f i / 2 ) T [ .  
Since in all three cases the effective coupling strengths have the same order of magnitude, 
the situation is very close to the case of a one-dimensional periodic chain of atoms with 
TL = Ts,  implying that the level splitting is not so apparent, or in other words the D ( E )  
versus E curve in the neighbourhood of E = 0 is quite smooth as in the periodic case 
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, , , , , , , , , 
.5 -1.0 -0.5 0 0.5 1.0 1.5 

Energy, E (in units of T,) = 10.‘~’ 

Figure 7. The D ( E )  versus E curve showing an 
almost continuous spectrum in the neighbour- 
hood of E = 0 in the second approximation. 

Figure 8. The D ( E )  versus E curve of a periodic 
chain with 1 TL/Tsl = 1 showing a continuous 
spectrum. 

(compare figures 7 and 8). It is possible to estimate the width of the ‘continuous 
spectrum’. Assuming the coupling strengths in all three cases to take the geometrical 
mean value ( f i / 2 ) T i  = & T t T i l  and considering the transformed chain as a periodic 
one, we obtain a half-bandwidth 2 X i T t T S 1  = 0.01. In comparison, numerical simu- 
lation yields a value 0.0109. 

Consider next the s litting of the level f i T 4  = TL = 0.1 in table 2, which cor- 

there are two coupling schemes between two ‘triatomic molecules’, namely (i) via a long 
bond and (ii) via three long bonds and two ‘monatomic molecules’. In the first case, we 
obtain from Schrodinger’s equations for the transformed chain, equation (20), 

responds to the state I V E  2) of an ‘equivalent’ ‘triatomic’ molecule. From figure 4 we see 

i T t  In - 1) + $ T i  l f i ,  n‘ + 1) = E - f i T 4  - $) lfi, n’)  (22) 

where l f i ,  n’) denotes the E = f i T g  = T L  eigenstate of the n’th ‘triatomic mol- 
ecules’. We see, therefore, that the effective coupling strength between IVj, n ’ )  and 
l f i ,  n’ + 1) is Ti = +TI = ( f i / 8 ) T t T i 1 .  Besides, there is also a shift A E  = 
( f i / S ) T ; *  T4-l = kT’, T i 2  in the original level E = f i T 4  = TL. A similar analysis yields 
for the second coupling scheme an effective coupling strength between I d 2 ,  n’) and 
IV?, n’ + l ) ,  TL = QTI3T&-*. 

Replacing the system by effective bonds Ti and Ti connecting ‘triatomic molecules’ 
as reduced single particles, we obtain for the transformed chain after renormalisation a 
second time exactly the sequence (19) or equivalently figure 4. Since I T [ / T i  1 < 1, 
deleting the long bonds, we again obtain a collection of ‘triatomic’ molecules. Owing to 
its smallness in order of magnitude, A E  = AT: T i 2  can also be neglected. We thus obtain 
the second-order splitting of the first-order level E = f i T 4  = T L  into three: 

V ~ T ;  - V?T; = T~ - ~ T ~ T S I  i f i T &  + f i T ;  = TL + 4TtT;‘ 

p ( E )  = a 
E =  V?T& = TL p ( E )  = 1 (23) 

p (E)  = t. 
A comparison with numerical simulation is given in table 3. Equations (23) and (24) 
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Table 3. Second-order splitting of the first-order level E = d/ZTg = TL in table 2 (adopting 
TL = O.lT,). 

Levels (in units T s )  Integrated DOS D ( E )  

Numerical 
Calculated simulation Calculated 

Numerical 
simulation 

TL - f T t T , '  = 0.0975 0.6042 
TL = 0.1 0.1000 % + i$ X + = = 0.6458 0.6459 
TL + tTtT, '  = 0.1025 0.6667 

a This is the value of D ( E )  in the second line in table 2. 

0.0975 

0.1022 

e + fz x 4 = ff = 0.6042 

a + i$ x t = 4 = 0.6667 

determine the second-order fine structures on the D(E)  versus E curve in the relevant 
energy range. 

The level E = - d T &  = - TL is in exactly symmetrical situation and needs no more 
discussion. 

3. Renormalisation analysis of electronic structure: levels E = +Ts and + d / z T s  

Consider, for the moment, the level E = T,, which corresponds to one of the two 
eigenstates of a diatomic molecule. Examination of figure 1 tells us that there are four 
different schemes of couplings between diatomic molecules shown in figures 9(a)-(d).  
In the case of figure 9(a ) ,  we derive from the Schrodinger equations 

TL In - 1) + T s  In + 1) = E / n )  

T,ln) + T L l n  + 2)  = Eln + 1) 

TL In + 1) + TL In + 3 )  = E / n  + 2)  

T L  In + 2)  + T s  In + 4) = Eln + 3 )  

the relation 

where I +, n ' )  = (v/z/2)( In) 5 In + 1)) are the two eigenstates corresponding to the 
eigenenergies L T, of the n'th diatomic molecule composed of the atoms n and n + 1. 
Equation (25) tells us that the effective coupling strength is, in this case, t T t / T s  with a 
corresponding level shift AEu = 2TtT;'. In the cases of figures S(b)-(d),  one obtains 
effective coupling strengths 4T;Ti' , - tT4LTi3 and 4T4LTi3 and level shifts 0, AEc = 
4TtT;' = AEu = AE and 0 ,  respectively. Denoting accordingly the bonds of different 
strengths by a, b ,  c and d ,  they appear along the chain in the following order: 

cbadcdabcbadabcdc . . . .  
Note that ( c  and/or a)  and ( b  and/or d )  always occur alternately, so that each diatomic 
molecule is connected to neighbouring ones on one and only one side by either an a or 
a c bond, inducing a shift A E  = -AT[ T i '  in the energy level of every molecule. 
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n' n'+ 1 - - 
A A -  ( 0 )  ... --* - " ... 

n' n'+ 1 

n-1 n n+l n+2 n+3 n t L  - - 
( b )  . .. ----o------o--o--o---. . . 

n-1 n n+ l  n+2 n.3 n 4  n+5 n+6 

n' n'+ 1 - - 
, . I  ,. I C )  ... 2 - - c 0---... 

n -1 n n + l  n+2 r i3 n i L n + 5  n+6 nt7 n+8 
n' n'+ 1 - - 

I -  , . - -  - -  - - -  - 4  c 0 - 7  < -  ... ( d )  ...- 
n-I n n+l n+2 n+3 nt4 n.5 n+6 n i l  0.8 n+9 n+10 

Figure 9. ( a )  Two diatomic molecules 17' = ( n ,  n + 1) and n' + 1 = ( n  + 3, n + 4) coupled 
via two long bonds and a monatomic molecule n + 2. ( 6 )  Two diatomic molecules n' = 
(n .  n + 1) and n' + 1 = ( n  + 5. n + 6) coupled via two long bonds and a triatomic molecule 
( n  + 2,n + 3.n + 4). (c)Twodiatomicmoleculesn' = ( n ,  n + 1)andn'  + 1 = ( n  + 7 , n  + 8) 
coupled via four long bonds. two monatomic ( n  + 2. n + 6) and one triatomic ( n  + 3, n + 4.  
I I  + 5) molecules. ( d )  Two diatomic molecules n' = ( n ,  n + 1) and n' + 1 = ( n  + 9, n + 10) 
coupled via four long bonds. one monatomic ( n  + 5) and two triatomic ( ( n  + 2, n + 3, 
n + 4). ( n  + 6. n + 7, n = 8)) molecules. 

Table 4. Splitting of zeroth-order level E = T,  in table 1 (adopting T,  = 0.1 T,) ,  

Levels (in units T,) Integrated DOS D ( E )  

Calculated 
Numerical 
simulation Calculated 

Numerical 
simulation 

0.7083 
9 - ''4 - - 0.7917 0.7917 

T, + (1 + V Z j 2 ) ~ ; r ; ~  = 1.0121 1.0120 # + $ x I - B -  J - 6 - 0.8333 0.8333 

p *  7 + a X f = E = 0.7083 r, + ( 1  - d92)rtr,1 = 0.9979 0.9979 
1.0050 x + t x ! - u -  l i  T ,  + iT;r; '  = i.oo5o 

This is the value of D ( E )  in the third line in table 1.  

The  bonds c and a! have strength I TI 1 = i T t  T i 3 ,  weaker in order of magnitude in 
comparison with bonds a and b of strengths T i  = i T i T S ' .  Replacing a and b with S and 
c and d with L, we have once again the sequence (19). Regarding each diatomic molecule 
as a single entity, we have once again the transformed chain of figure 4. Deletion of 
TI again gives a collection of monatomic and triatomic molecules, whereby we obtain 
the fine structure of the E = T, levels as 

1-1/2 
p ( E )  = d 

v5 
T s  + A E - d T ;  = T ,  +iTtTS'  --T2 T-' = T 5 t-T2 L S  T-' 

2 L s  

1/2 l + V 5  
T s  + A E  = T5 + i T t  T i '  p(E)=8 (26)  

Ts i- A E  + d T ;  = T ,  +$TtT i '  -t -TtT,' = Ts +-TtT,' 

Comparison with numerical simulation is given in table 4. We  note that the energy 
differences between the  split levels a re  already of the order of T t T S 1 ,  so that,  as we 

p ( E )  =t. 2 2 
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n' n'+ 1 - - ... - 0 p -  -----o--o-... 
n -1 n n + l  n i2  n t 3  n i 4  n i 5  n i 6  

n' nl+ 1 - - 
A . % , .  .... - - _  a----. .. 

n -1 n n+ l  n+2 n+3 ntl, n+5 n+6 n + l  n+0 

n' n: 1  - - 
r s o---d----i)--o - - 1 -  . . . .  ., " *  . . - -  

n n t l  n+2 n+3 n + L  n+5 n.6 n t l  niO ni9 ntlO "* 

Figure 10. ( a )  Two triatomic molecules n' = ( n ,  n + 1, n + 2) and n' + 1 = ( n  + 4, n + 5 ,  
n + 6) coupled via two long bonds and a monatomic molecule ( n  + 3). ( b )  Two triatomic 
molecules n' = ( n ,  n + 1. n + 2) and n' + 1 = ( n  + 6, n + 7 ,  n + 8) coupled via three long 
bonds. a diatomic ( n  = 3, n + 4) and a monatomic ( n  + 5 )  molecule. (c) Two triatomic 
molecules n' = (n .  n + 1 ,  n + 2) and n' + 1 = ( n  + 8. n + 9. n + 10) coupled via four long 
bonds. a monatomic ( n  + 5) and two diatomic ( ( n  + 3, n + 4), ( n  + 6, n + 7)) molecules. 

n-1 

mentioned before, there is no first-order splitting of the level E = Ts. It is hardly 
necessary to say that, by symmetry, the analysis applies to the level E = -Ts ,  too. 

Let us turn lastly to the level E = f i T s  in the zeroth approximation. Investigation 
of figure 1 shows that there are three different coupling schemes between two triatomic 
molecules, shown separately in figures 10(a)-(c). In the case of figure lO(a), starting 
from the Schrodinger equations 

TL In - 1) + Ts  In + 1) = Eln) 

T ,  In) + T s  In + 2 )  = E / n  + 1) 

T,ln + 1) + T , / n  + 3 )  = Eln + 2 )  

T,ln + 2 )  + T L / n  + 4 )  = E / n  + 3 )  

T J n  + 3)  + T s / n  + 5 )  = Eln + 4 )  

T s  In + 4 )  + T s  In + 6 )  = Eln + 5 )  

substitution for 1 n) ,  1 n + l), 1 n + 2)  and In + 4), 1 n + 5 ) ,  In + 6 )  in terms of the triatomic 
molecular states 1 k f i ,  n ' ) ,  10, n ' )  and 1 tv/2, n' + l), 10, n' + l), respectively, elim- 
ination of In + 3), 1 -dT, n ' ) ,  10, E'), 1 -U?, n' + 1) and 10, n' + l), and neglect of 
higher-order terms lead to 

Hence, the effective coupling strength between the states 1 fi, n ' )  and I a, n' + 1) in 
case (a )  in figure 10 is 

Tk = (V?/8)TtT, '  along with a level shift AE,  = ( f i / 8 ) T 2 , T i 1 .  (29) 

A similar analysis yields, in the cases of figures 10(b) and (c), respectively, for the 
effective coupling strengths and level shifts 

T I ,  = ( a / 1 6 ) T ; T i 2  AEh = AE,  AE 
(30) 

T i 2  = ( f i / 3 2 ) T ; T i 3  AEc = &AE. 

Here T I ,  and T i 2  are of higher orders of magnitude than T i  and can be omitted. 
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Figure 11. ( a )  An equivalent monatomic molecule 
coupled at both ends via renormalised bonds of 
strength TL,. ( b )  An equivalent monatomic mol- 
ecule coupled at one end via a renormalised bond 
of strength T;,  and at the other end via a renor- 
malised bond of strength T12. (c) An equivalent 
diatomic molecule coupled at both ends via renor- 
malised bonds of strength Ti , .  (d )  An equivalent 
diatomic molecule coupled at one end via a renor- 
malised bond of strength T;,  and at the other end 
via a renormalised bond of strength TL2. ( e )  An 
equivalent diatomic molecule coupled at both 
ends via renormalised bonds of strength TL2. 

However, AEo, AEb and h E ,  have the same order of magnitude as Tk, and must not be 
ignored. 

Regarding the triatomic molecules in the state 1 fi) as equivalent single atoms with 
appropriate level shifts coupled through the effective bond T i ,  equation (29) (with 
T I ,  and Ti2 switched off), we are left with a collection of monatomic and diatomic 
molecules. There is complexity in the different surroundings of the atoms, leading to 
different level shifts, as shown in figures l l (a)-(e) ,  where all possible cases have been 
enumerated. In view of the level-shift contributions given in (29) and (30), we have in 
cases (a)  and (b ) ,  the split levels 

E ,  = f i T s  + (V?/8)T2,Ti1 + ( a / 1 6 ) T [ T i 1  

E ,  = f i T s  + 2 ( a / 8 ) T [ T g 1  = a T S  + (V5/4)T2,Ti1 p(E) = h (31) 

= V/ZTs  + ( 3 d / 1 6 ) T 2 , T i 1  p (E)  = dr. (32) 
It is also easily seen that in the cases (c) and (e), 

E,? = V ~ T ,  + ~ ( V ~ / B ) T ; T ; ~  ( V ~ / ~ ) T ; T ; ]  

E,, = f i T s  + ( f i / g ) T [ T ; '  + ( f i / 1 6 ) T [ T s 1  ? ( V 5 / 8 ) T t T i 1  

In case (d) ,  the energy eigenvalues of the split levels can be found by solving the following 
secular equation: 

( 3 f i / 1 6 ) T ; T i 1  - ( E  - d T , )  

( f i / S ) T i T S '  

(V5/8)T2,Ti1 
(V5/4)T2,Ti1 - ( E  - d T S  

namely, 



Renormalisation analysis of a TM chain 

Table 5.  Splitting of zeroth-order level E = .\/?Ts in table 1 (adopting T, = 0. lTs) ,  
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Levels (in units Ts)  Integrated DOS D ( E )  

Numerical Numerical 
Calculated simulation Calculated simulation 

E,_ = 1.415 
E,-  = 1.415 1.418 
Ed- = 1.416 
Eh = 1.417 1.419 

E,, = 1.419 

E, ,  = 1.420 1.421 

E, = 1.418 1.421 

E,,_ = 1.419 

2' + & = = 0.8438 
+$ + & = & = 0.8542 
e + & = R = 0.8750 

+ & = +$ = 0.9167 
1 - 23 - 0,9583 12 + 2 4  - 24 - 

+$ + k = % = 0.9688 

% + & = 1  1 .0000 

0.8542 

0.9167 
0.9583 il 

% + = - = 0.9896 

~ ~~ 

* This is the value of D ( E )  in the fourth line in table 1 

Thus the E = f i T s  level splits up to the order ( T i T S 1 )  into eight given in equations 
(31)-(34) and (36). Numerical results in the case TL/Ts  = 0.1 are given in table 5 ,  where 
owing to smadlness in level separation and limitation in the accuracy of numerical 
simulation working with 15 000 atoms, computer simulation gives only the levels Ec-,  
E,, E, and E,, and is unable to differentiate all other sublevels in the fine structure of 
E = ~ T s .  Note that there is also a source of error in the numerical values of calculated 
levels, for we have assumed consistently 1 T L / T s /  1, whereas we put TL = O.lTs in 
obtaining the numbers in the first column in table 5 .  We remark again that the above 
analysis applies to the zeroth-order level E = - ~ T s ,  too. 

4. Discussion 

We have studied analytically the electronic structure of a Thue-Morse aperiodic chain 
in the I TL/Ts  1 < 1 case by means of a renormalisation procedure. The results agree very 
satisfactorily with numerical simulation. From our experience on the feasibility and 
effectiveness of the method in the case of a Fibonacci quasi-crystal (Ma and Tsai 1988) 
and in the present case, we speculate that the method is not limited to one-dimensional 
problems. In principle, it should have the potentiality to be generalised and modified to 
solve two- and three-dimensional problems like the Penrose lattice or real quasi-crystals. 
The algebra might be much more involved and might become cumbersome for, or even 
beyond the possibility of, manual calculations. However, higher-dimensional problems 
might still be tractable with the help of the computer algebra. Developments in this 
direction are greatly expected by the importance of studying realistic quasi-crystals. 

In the above calculations, we have assumed eM = eD = eT. It is not difficult to treat 
the case of unequal e by the same method. The main feature in the case of unequal e is 
the loss of antisymmetry of the D ( E )  versus E curve with respect to E = 0. 

As expected by Riklund et a1 (1987), the Thue-Morse chain has properties lying 
midway between a Fibonacci quasi-crystal and a periodic chain. The above analysis 
shows that the electronic spectrum of a Thue-Morse chain consists of parts displaying 
Cantor structure characteristic of aperiodic systems as well as a continuous band very 
similar in nature to that of a periodic chain (figure 7). Our analytical discussions do show 
a tendency of the Thue-Morse chain to approach a periodic system. 



1072 Ming-Guang Qin et a1 

An important difference of the Thue-Morse aperiodic chain from the Fibonacci 
quasi-crystal is the absence of simple self-similarity in either the geometrical structure 
or the step structure in the D ( E )  versus E curve. Our previous work (Ma and Tsai 1988) 
on the Fibonacci problem utilised greatly the self-similarity. We were thus able to derive 
the fine structure in the electronic spectrum to indefinitely higher and higher orders. 
Indeed, the results contained in table 1 of Ma and Tsai (1988) and continuation to all 
higher orders are exact and independent of the condition 1 T L / T s /  < 1 repeatedly used 
in the analysis. We expect that it should be possible to derive table 1 of Ma and Tsai 
(1988) on much more general grounds, relying mainly on the self-similarity. In the case 
of a Thue-Morse chain, absence of simple self-similarity limits results of the present 
analysis to be valid only when 1 TL/Tsl < 1. Furthermore, extension of calculations to 
orders higher than second becomes difficult for lack of a simple guiding rule. 
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